TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024 HOMEWORK 11

MATHIAS BRAUN AND WENHAO ZHAO

Homework 11.1 (Cauchy–Riemann equations and C-linearity on \mathbb{C}^n). Identify \mathbb{C}^n with \mathbb{R}^{2n} and let $U \subset \mathbb{C}^n$. Consider a differentiable function $f: U \to \mathbb{C}$. Then at each point $a \in U$ there exists an \mathbb{R} -linear mapping $\mathrm{D} f(a) \colon \mathbb{R}^{2n} \to \mathbb{C}$ such that

$$\lim_{\begin{subarray}{c} h \to 0, \\ h \neq 0\end{subarray}} \frac{|f(a+h) - f(a) - Df(a)h|}{|h|} = 0.$$

Show Df(a) is **C**-linear if and only if

$$\frac{\partial}{\partial \overline{z}_j} f(a) = 0$$

for every $j \in \{1, ..., n\}$, where $2\partial/\partial \overline{z}_i := \partial/\partial x_i + i \partial/\partial y_i$ and z = x + iy with $x, y \in \mathbf{R}^n$.

Homework 11.2 (Slicing method in action). In this exercise we transfer some well-known results from one-dimensional complex analysis to the several variables setting. Show the following statements.

- a. Liouville's theorem. Every bounded entire function $f: \mathbb{C}^n \to \mathbb{C}$ is constant.
- b. **Identity theorem**. Let $D \subset \mathbb{C}^n$ be a domain and $f: D \to \mathbb{C}$ be holomorphic. If f vanishes identically on $B_r(a)$ for some $a \in D$ and r > 0, then f = 0.
- c. Open mapping theorem. Let $D \subset \mathbb{C}^n$ be a domain and $f : D \to \mathbb{C}$ be nonconstant and holomorphic. Then f(D) is again a domain.
- d. **Maximum principle**. Let $D \subset \mathbb{C}^n$ be a domain and $f: D \to \mathbb{C}$ be holomorphic. If |f| attains its maximum on D then f is constant.

Homework 11.3 (Failure of the open mapping theorem in the fully vectorial case). In Homework 11.2 we proved the open mapping theorem for functions with target domain \mathbb{C} . Here we show that it is false for vectorial functions $f: D \to \mathbb{C}^m$, where $m \ge 2$, even when no component is constant. Define $f: \mathbb{C}^2 \to \mathbb{C}^2$ by $f(z_1, z_2) := (z_1, z_1 z_2)$. Show f is holomorphic yet not an open map¹.

Homework 11.4 (Power series in several variables*). a. For each series below, determine for each series below the largest open set $U \subset \mathbb{C}^2$ where it converges absolutely. Is it convex?

$$\bullet \sum_{n=0}^{\infty} z^n w^n.$$

$$\bullet \sum_{1}^{\infty} z^{n} w^{n!}.$$

b. Let $F(z) := \sum_{\alpha \in \mathbb{N}_0^n} c_{\alpha} z^{\alpha}$ be a formal power series centered at the origin. Show that if $z \in \mathbb{C}^n$ is such that F(z) converges absolutely, then $F(\lambda_1 z_1, \dots, \lambda_n z_n)$ also converges absolutely provided $|\lambda_i| \le 1$ for every $i \in \{1, \dots, n\}$.

Date: December 9, 2024.

¹Hint. In order to guess where the map is not open one can look where its differential is not invertible.